Neural-based Natural Language Generation in Dialogue using RNN Encoder-Decoder with Semantic Aggregation

نویسندگان

  • Van-Khanh Tran
  • Le-Minh Nguyen
  • Satoshi Tojo
چکیده

Natural language generation (NLG) is an important component in spoken dialogue systems. This paper presents a model called Encoder-Aggregator-Decoder which is an extension of an Recurrent Neural Network based Encoder-Decoder architecture. The proposed Semantic Aggregator consists of two components: an Aligner and a Refiner. The Aligner is a conventional attention calculated over the encoded input information, while the Refiner is another attention or gating mechanism stacked over the attentive Aligner in order to further select and aggregate the semantic elements. The proposed model can be jointly trained both sentence planning and surface realization to produce natural language utterances. The model was extensively assessed on four different NLG domains, in which the experimental results showed that the proposed generator consistently outperforms the previous methods on all the NLG domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward Multi-domain Language Generation using Recurrent Neural Networks

In this paper we study the performance and domain scalability of two different Neural Network architectures for Natural Language Generation in Spoken Dialogue Systems. We found that by imposing a sigmoid gate on the dialogue act vector, the Semantically Conditioned Long Short-term Memory generator can prevent semantic repetitions and achieve better performance across all domains compared to an ...

متن کامل

Natural Language Generation for Spoken Dialogue System using RNN Encoder-Decoder Networks

Natural language generation (NLG) is a critical component in a spoken dialogue system. This paper presents a Recurrent Neural Network based Encoder-Decoder architecture, in which an LSTM-based decoder is introduced to select, aggregate semantic elements produced by an attention mechanism over the input elements, and to produce the required utterances. The proposed generator can be jointly train...

متن کامل

An Encoder-Decoder Framework Translating Natural Language to Database Queries

Machine translation is going through a radical revolution, driven by the explosive development of deep learning techniques using Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). In this paper, we consider a special case in machine translation problems, targeting to translate natural language into Structural Query Language (SQL) for data retrieval over relational database. ...

متن کامل

Semantic Refinement GRU-Based Neural Language Generation for Spoken Dialogue Systems

Natural language generation (NLG) plays a critical role in spoken dialogue systems. This paper presents a new approach to NLG by using recurrent neural networks (RNN), in which a gating mechanism is applied before RNN computation. This allows the proposed model to generate appropriate sentences. The RNN-based generator can be learned from unaligned data by jointly training sentence planning and...

متن کامل

Natural Language Generation in Dialogue using Lexicalized and Delexicalized Data

Natural language generation plays a critical role in spoken dialogue systems. We present a new approach to natural language generation for task-oriented dialogue using recurrent neural networks in an encoder-decoder framework. In contrast to previous work, our model uses both lexicalized and delexicalized components i.e. slot-value pairs for dialogue acts, with slots and corresponding values al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017